
A Day in the Life of a Developer...
Fighting Secrets Sprawl in CI/CD
A visual look at the identity and access challenges developers
face in GitLab pipelines, the risks these issues create,
and how teams can solve them.

Alex is a developer
working in GitLab CI/CD.

Meet Alex

Most days are spent building, testing, and
deploying software. Today, the team is also
dealing with credential issues.

Did anyone
rotate

that key?

46 $ echo ${AWS_SECRET_ACCESS_KEY}

47 ***********

������
��������
����� �����

��������������������������
�
��
	����� 1fe65485main

Guess I’ll
generate
a new one…

Build Failure — 9:14 AM

Debugging — 11:20 AM

55 $ echo ${TOKEN}

56 ghp_abcdef1234567890

I thought
masked meant…

masked?

Why is this showing in
the logs as plaintext?

���_���������

Code Analysis — 1:00 PM

I didn’t
even write
that file.

Do we have
a process

for this?

IN SOME ANALYSIS TOOL...

Investigation — 4:43 PM

Add new file
Bob authored 5 months ago

Where did this come from?
Are we still using this key

anywhere else?

Audit — 7:39 PM

Wait, was this triggered
by a person? Or an AI agent?

������
��������
����� �����

���������������������������������
�
��
	�� ��

��

��
���	����
	�����

���� �����

����������������_���������
�
��
	�­��	�� main 1fe65485

1fe65485main

How Secrets Accumulate
As Alex discovered there’s no single place where secrets live. Instead,
they show up in different forms across different layers of the GitLab
environment. This is usually not done maliciously. Most of it is
well-intentioned or done out of necessity. But over time,
it adds up – and the risk compounds.

Where Credentials
Typically Surface

Project-Level CI/CD
Variables
Often used to store tokens or keys for build, test,
or deploy steps (subtext options).

Group-Level Inherited
Variables
Applied across many projects, sometimes without
clear visibility or scope control.

.gitlab-ci.yml Files
Credentials occasionally hardcoded or indirectly
referenced in scripts.

.env Files Committed to
Source
Sensitive values included for local testing
but accidentally pushed.

Shell Scripts Passed
Between Teammates
Credentials embedded in helper scripts or
bootstrap routines.

Tokens Shared in Slack or
Pasted Into Issues
Quick workarounds that bypass audit and lifecycle
controls.

Developer Machines
Locally stored API keys, often reused in CI/CD jobs
or copied into repos.

CI/CD Job Logs
Secrets accidentally printed due to logging,
misconfigured scripts, or lack of masking.

Internal (private) code repositories — including GitLab — leak secrets at a
rate 8x higher than public ones, due to overconfidence in their security and
lack of consistent oversight.

35% of private repositories on platforms like GitLab are found to contain at
least one plaintext secret — including passwords, API keys, or tokens.

More Than
an Inconvenience

Private Repos Leak Secrets 8x More Often

1 in 3 Private Repos Contains a Plaintext Secret

58% of keys have full access. The other 41% still have read-level access to
sensitive data — violating least privilege.

99% of GitLab API Keys Are Over-Permissioned

Source: GitGuardian

There’s broader context for what Alex is experiencing.

In both the Pearson and Internet Archive incidents,
improperly managed GitLab tokens were the initial access
point for attackers.

“...The initial breach of Internet Archive
started with them finding an exposed GitLab
configuration file on one of the organization's
development servers,
services-hls.dev.archive.org.”

“Threat actors compromised Pearson's
developer environment in January 2025
through an exposed GitLab Personal Access
Token (PAT) found in a public.git/config file.”

Real-World Breaches
Started With GitLab Tokens

Source: BleeingComputer

Source: BleeingComputer

What Developers
Like Alex
Deserve Instead

• Hardcoding secrets just to get
unblocked.

• CI/CD jobs silently failing
because a token expired.

• Reusing one token across
environments because rotation
is a mess.

• Rolling back changes not
because the code was bad, but
because the secret broke.

• No clear way to know who or
what used a secret — or when.

• Credentials that show up when
the job runs and vanish right after.

• Rotation handled by the platform,
not by hand or cron.

• Policies that say whether this app
gets access or not — and that's it.

• Logs that say this job accessed
that resource at this time.

• Auth that’s invisible, traceable,
and boring, like it should be.

What’s Actually Annoying What They Actually Want

Dev time is too valuable
for auth plumbing.

Let’s make it... just work.

Try Aembit Free
Because secrets don’t belong in your pipeline.

www.aembit.io

